unipotent automorphism - определение. Что такое unipotent automorphism
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое unipotent automorphism - определение

ONE PLUS NILPOTENT ELEMENT
Unipotent radical; Unipotent element; Unipotent matrix; Quasi-unipotent; Unipotent matrices; Unipotent group; Unipotent algebraic group; K-Unipotent groups for a field k and its completion; Unipotential

Unipotent         
In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.
Graph automorphism         
  • 40px
  • 15px
  • 15px
  • 40px
  • link=Complete bipartite graph
  • link=Dodecahedron
  • link=F26A graph
  • link=Folkman graph
  • link=Frucht graph
  • link=Holt graph
  • link=Nauru graph
  • link=Paley graph
  • symmetric]], all edges are equivalent.
  • link=Shrikhande graph
  • link=Truncated tetrahedron
  • link=Triangular prism
SYMMETRY OF A GRAPH ONTO ITSELF PRESERVING THE EDGE–VERTEX CONNECTIVITY
Graph Automorphism; Graph automorphism problem
In the mathematical field of graph theory, an automorphism of a graph is a form of symmetry in which the graph is mapped onto itself while preserving the edge–vertex connectivity.
Automorphism         
  • Cayley tables]].
ISOMORPHISM FROM A MATHEMATICAL OBJECT TO ITSELF
AutoMorphism; Automorphisms; Field automorphism; Nontrivial automorphism; Trivial automorphism
·noun Automorphic characterization.

Википедия

Unipotent

In mathematics, a unipotent element r of a ring R is one such that r − 1 is a nilpotent element; in other words, (r − 1)n is zero for some n.

In particular, a square matrix M is a unipotent matrix if and only if its characteristic polynomial P(t) is a power of t − 1. Thus all the eigenvalues of a unipotent matrix are 1.

The term quasi-unipotent means that some power is unipotent, for example for a diagonalizable matrix with eigenvalues that are all roots of unity.

In the theory of algebraic groups, a group element is unipotent if it acts unipotently in a certain natural group representation. A unipotent affine algebraic group is then a group with all elements unipotent.